REACTION OF 1,2-DIAMINO-3-SUBSTITUTEDCYCLOPROPENIUM IONS WITH ARYLMAGNESIUM BROMIDES Zen-ichi Yoshida,^{*} Hisatoshi Konishi,¹⁾ Yoshikiyo Miura, and Hisanobu Ogoshi

Department of Synthetic Chemistry, Kyoto University,

Kyoto 606, Japan

(Received in Japan 3 September 1977; received in UK for publication 11 October 1977)

Syntheses and structure of the electron rich cyclopropenium ion substituted with amino groups have been investigated in our laboratory.²⁾ It is noted that treatment of 1,2-bisdialkylamino-3-chlorocyclopropenium ion (<u>1</u>) with alkali gave diaminocyclopropenone *via* nucleophilic attack of hydroxy anion towards the carbon atom of the 3-position. Thus deep insight into reactivity of the pivotal carbon(C-3) should enable us to prepare novel cyclopropenium derivatives. We wish to report the reaction of <u>1</u> with arylmagnesium bromide.

A mixture of 1,2-bisdialkylamino-3-chlorocyclopropenium perchlorate $\underline{1}$ and excess molar amount of arylmagnesium bromide in absolute ether was refluxed for 10 hr. The reaction mixture was poured into dil. perchloric acid and extracted with CH_2C1_2 . Organic layer was dried over anhydrous Na_2SO_4 and the solvent was evaporated to dryness. Recrystallization of the residue gave the arylsubstituted compound ($\underline{2}$)³ and a small amount of diaminocyclopropenium perchlorate ($\underline{3}$).⁴ ($\underline{2a}$); mp 215-216°; 61% yield; v_{max} (KBr) 1915, 1630, 1560, 1095, 775, 732, and 680 cm⁻¹; δ (DMSO-d₆) 1.16(d, 12H), 1.37(d, 12H), 3.94(sep, 2H), 4.10(sep, 2H), and 7.58(m, 5H).⁶ ($\underline{2b}$); mp 260°(dec.); 54% v_{max} (KBr) 1920, 1574, 1090, 798, 727, and 700 cm⁻¹; δ (DMSO-d₆) 1.32(s, 18H), 3.32(s, 6H), and 7.3-7.6(m, 5H). ($\underline{2c}$); mp 281-282°; 73% v_{max} (KBr) 1915, 1609, 1560, 1555, 1253, 1095, and 841 cm⁻¹; δ (DMSO-d₆, 80°) 1.30(d, 24H), 3.84(s, 3H), 4.03(sep, 4H), and 7.1-7.5 (AA'BB', 4H). ($\underline{2d}$); mp 295°(dec.); 8%; v_{max} (KBr) 1917, 1597, 1552, 1252, 1093, and 760 cm⁻¹; δ (DMSO-d₆, 100°)

4319

	R_1	R ₂	Ar		R_1	R ₂	Ar
<u>2a</u>	i-Pr	i-Pr	с ₆ н ₅ -	<u>2c</u>	i-Pr	i-Pr	4-CH ₃ O-C ₆ H ₄ -
<u>2b</u>	t-Bu	Me	с ₆ н ₅ -	<u>2d</u>	i-Pr	i-Pr	2-CH ₃ O-C ₆ H ₄ -

1.27(d, 24H), 3.85(s, 3H), 4.07(sep, 4H), and 7.2-7.7(m, 4H). Aryl substituted cyclopropenium salts $\underline{2}$ were exclusively obtained by treatment of 1,2-bisdiisopropylamino-3-methoxycyclopropenium perchlorate $(\underline{4a})^{7}$ with aryl-magnesium bromide in ether at room temperature for 3 hr. The yields were markedly improved by changing the leaving group from C1 to OMe (2a, 74%, 2d, 58%).

The potassium iodide treatment of 1 in acetone led to the quantitative formation of 1,2-bisdialky1amino-3-iodocyclopropenium perchlorate (5). Addition of phenylmagnesium bromide in ether to equimolar amount of 5 in ether-CH₂Cl₂(2:1) gave colorless and transparent solution within a few minutes and successive treatment of the reaction mixture with dil. $HC10_4$ yielded only diaminocyclopropenium perchlorate 3. Formation of 3 is probably due to generation of the magnesium complex of diaminocyclopropenylidene (6). The reaction behaviour of 6 towards electrophiles have been examined (vide infra). The structure of the intermediate can be represented as magnesium compound of positively charged 2π aromatic system. Thus the intermediate is regarded as Grignard reagent of the cyclopropenium ion 6. Infrared study of the equibrium between 5 and 6 shows predominant exsistence of <u>6</u>. The solution <u>6a</u> exhibits a new band at 1834 cm⁻¹ assigned to the framework deformation of cyclopropenium ion bonded to magnesium in the infrared.

No. 49

The reaction of the solution containing <u>6</u> with dimethylsulfate afforded 1,2-bisdialkylamino-3-methylcyclopropenium perchlorate (<u>7</u>). (<u>7a</u>); 84% yield.⁴) (<u>7b</u>); 80%; mp 179°; $v_{max}(KBr)$ 1918, 1552, 1180, and 1092 cm⁻¹; $\delta(CDC1_3)$ 1.45(s, 18H), 2.27(s, 3H), and 3.25(s, 6H). The carbinol (<u>8a</u>)⁴) was obtained in quantitative yield from the reaction of <u>6a</u> with benzaldehyde. The reactivity of <u>5</u> to nucleophile is markedly depressed by the substitution with strong electron-donating amino group and the carbon of cyclopropenium ion core is more electronegative than the phenyl carbon.⁸) Therefore, the halogen-metal exchange between the iodide <u>5</u> and phenylmagnesium bromide readily proceeds to give Grignard reagent <u>6</u>. In the case of the chloride <u>1</u>, slow exchange reaction of chlorine with magnesium causes formation of <u>2</u> through a nucleophilic attack of carbanion towards <u>1</u>. For reaction of 7,7-dichlorocycloheptatriene, the iodide <u>5a</u> was recovered in nearly quantitative yield. The Grignard reagent <u>6</u> seems to be less reactive than phenylmagnesium bromide.

The Grignard reagent $\underline{6a}$ was also prepared by the treatment of the iodide $\underline{5a}$ with magnesium in the presence of 1,2-dibromoethane. Generation of $\underline{6a}$ was confirmed by successive chemical reactions such as hydrolysis, alkylation and addition to aldehyde.

References and Notes

- Present address, Department of Environmental Chemistry and Technology, Faculty of Engineering, Tottori University, Tottori 640.
- 2) (a) Z. Yoshida, and Y. Tawara, J. Am. Chem. Soc., 93, 2573 (1971).
 - (b) Z. Yoshida, H. Konishi, Y. Tawara, and H. Ogoshi, ibid., <u>95</u>, 3043 (1973).
 - (c) Z. Yoshida, Y. Tawara, S. Hirota, and H. Ogoshi, Bull. Chem. Soc. Jpn., 47, 797 (1974).
 - (d) Z. Yoshida, Top. Curr. Chem., <u>40</u>, 47 (1973).
 - (e) Z. Yoshida, H. Konishi, and H. Ogoshi, J. Chem. Soc., Chem. Commun., 359 (1975).
 - (f) Z. Yoshida, S. Araki. and H. Ogoshi, Tetrahedron Lett., 19 (1975).
- 3) All new compounds gave satisfactory elementary analyses.
- 4) The structure was proved by comparison of its infrared and pmr spectra with those of an authentic sample.⁵⁾
- 5) To be published elsewhere.
- 6) Recently, this compound was prepared by another method; M. T. Wu, D. Taub, and A. A. Patchett, Tetrahedron Lett., 2405 (1976).
- The compound <u>4a</u> was prepared by treatment of <u>1a</u> with methanol in the presence of sodium bicarbonate quantitatively, mp 162°.
- 8) The 13 C-H coupling constant of the ring proton of <u>la</u> is 242 Hz. This value is agree with the characteristic hybridization of cyclopropenium ion core.⁹)
- 9) R. Breslow, and J. T. Groves, J. Am. Chem. SOc., 92, 984 (1970).